Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Biomater Adv ; 146: 213310, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716597

RESUMO

Polyetheretherketone (PEEK) has been widely used in the preparation of orthopedic implants due to its biological inertness and similar mechanical modulus to natural bone. However, the affinity between biological tissue (bone and soft tissue) and PEEK surface is weak, leading to low osseointegration and an increased risk of inflammation. The situation could be improved by modifying PEEK surface. Surfaces with good hydrophilicity and proper microtopography would promote cellular adhesion and proliferation. This work presented a two-step surface modification method to achieve the effect. Polyacrylic acid (PAA) chains were grafted on PEEK surface by UV irradiation. Then, ethylenediamine (EDA) was added to introduce amino groups and promote the cross-linking of PAA chains. Furthermore, a mathematical model was built to describe and regulate the surface topography growth process semi-quantitatively. The model fits experimental data quite well (adjusted R2 = 0.779). Results showed that the modified PEEK surface obtained superhydrophilicity. It significantly improved the adhesion and proliferation of BMSCs and MFBs by activating the FAK pathway and Rho family GTPase. The cellular affinity performed better when the surface topography was in network structure with holes in about 25 µm depth and 20-50 µm diameter. Good hydrophilicity seems necessary for the FAK pathway activation, but simply improving surface hydrophilicity might not be enough for cellular affinity improvement. Surface topography at micron scale should be a more important cue. This simple surface modification method could be contributed to further study of cell-microtopography interaction and have potential applications in clinical PEEK orthopedic implants.


Assuntos
Polietilenoglicóis , Polímeros , Benzofenonas , Cetonas/farmacologia , Cetonas/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas
4.
Biomed Pharmacother ; 151: 113164, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609371

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) tend to differentiate into adipocytes rather than osteoblasts in osteoporosis and other pathological conditions. Understanding the mechanisms underlying the adipo-osteogenic imbalance greatly contributes to the ability to induce specific MSC differentiation for clinical applications. This study aimed to explore whether DEP-domain containing mTOR-interacting protein (DEPTOR) regulated MSC fate and bone-fat switch, which was indicated to be a key player in bone homeostasis. We found that DEPTOR expression decreased during the osteogenesis of BMSCs but increased during adipogenesis and the shift of cell lineage commitment of BMSCs to adipocytes in mice with osteoporosis. DEPTOR facilitated adipogenic differentiation while preventing the osteogenic differentiation of BMSCs. Deptor ablation in BMSCs alleviated bone loss and reduced marrow fat accumulation in mice with osteoporosis. Mechanistically, DEPTOR binds transcriptional coactivator with a PDZ-binding motif (TAZ) and inhibits its transactivation properties, thereby repressing the transcriptional activity of RUNX2 and elevating gene transcription by peroxisome-proliferator-activated receptor-gamma. TAZ knockdown in BMSCs abolished the beneficial role of Deptor ablation in bone-fat balance in mice. Together, our data indicate that DEPTOR is a molecular rheostat that modulates BMSC differentiation and bone-fat balance, and may represent a potential therapeutic target for age-related bone loss.


Assuntos
Osteogênese , Osteoporose , Adipogenia/genética , Animais , Diferenciação Celular/genética , Camundongos , Osteoblastos/metabolismo , Osteogênese/genética , Osteoporose/patologia
5.
Bone Res ; 10(1): 25, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35256591

RESUMO

Senescence impairs preosteoblast expansion and differentiation into functional osteoblasts, blunts their responses to bone formation-stimulating factors and stimulates their secretion of osteoclast-activating factors. Due to these adverse effects, preosteoblast senescence is a crucial target for the treatment of age-related bone loss; however, the underlying mechanism remains unclear. We found that mTORC1 accelerated preosteoblast senescence in vitro and in a mouse model. Mechanistically, mTORC1 induced a change in the membrane potential from polarization to depolarization, thus promoting cell senescence by increasing Ca2+ influx and activating downstream NFAT/ATF3/p53 signaling. We further identified the sodium channel Scn1a as a mediator of membrane depolarization in senescent preosteoblasts. Scn1a expression was found to be positively regulated by mTORC1 upstream of C/EBPα, whereas its permeability to Na+ was found to be gated by protein kinase A (PKA)-induced phosphorylation. Prosenescent stresses increased the permeability of Scn1a to Na+ by suppressing PKA activity and induced depolarization in preosteoblasts. Together, our findings identify a novel pathway involving mTORC1, Scn1a expression and gating, plasma membrane depolarization, increased Ca2+ influx and NFAT/ATF3/p53 signaling in the regulation of preosteoblast senescence. Pharmaceutical studies of the related pathways and agents might lead to novel potential treatments for age-related bone loss.

6.
Nat Aging ; 2(10): 906-922, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118283

RESUMO

Although clinical evidence has indicated an association between skin atrophy and bone loss during aging, their causal relationship and the underlying mechanisms are unknown. Here we show that premature skin aging drives bone loss in mice. We further identify that cystatin-A (Csta), a keratinocyte-enriched secreted factor, mediates the effect of skin on bone. Keratinocyte-derived Csta binds the receptor for activated C-kinase 1 in osteoblast and osteoclast progenitors, thus promoting their proliferation but inhibiting osteoclast differentiation. Csta secretion decreases with skin aging in both mice and humans, thereby causing senile osteoporosis by differentially decreasing the numbers of osteoblasts and osteoclasts. In contrast, topical application of calcipotriol stimulates Csta production in the epidermis and alleviates osteoporosis. These results reveal a mode of endocrine regulation of bone metabolism in the skin, and identify Csta as an epidermally derived hormone linking skin aging to age-related bone loss. Enhancers of skin Csta levels could serve as a potential topical drug for treatment of senile osteoporosis.


Assuntos
Osteoporose , Envelhecimento da Pele , Humanos , Camundongos , Animais , Cistatina A/metabolismo , Osteoclastos/metabolismo , Osteoblastos , Osteoporose/tratamento farmacológico
7.
Clin Interv Aging ; 15: 1201-1212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764906

RESUMO

INTRODUCTION: Estrogen deficiency leads to bone loss in postmenopausal osteoporosis, because bone formation, albeit enhanced, fails to keep pace with the stimulated osteoclastic bone resorption. The mechanism driving this uncoupling is central to the pathogenesis of postmenopausal osteoporosis, which, however, remains poorly understood. We previously found that Cxcl9 secreted by osteoblasts inhibited osteogenesis in bone, while the roles of Cxcl9 on osteoclastic bone resorption and osteoporosis are unclear. MATERIALS AND METHODS: Postmenopausal osteoporosis mouse model was established by bilateral surgical ovariectomy (OVX). In situ hybridization was performed to detect Cxcl9 mRNA expression in bone. ELISA assay was conducted to assess Cxcl9 concentrations in bone and serum. Cxcl9 activity was blocked by its neutralizing antibody. Micro-CT was performed to determine the effects of Cxcl9 neutralization on bone structure. Cell Migration and adhesion assay were conducted to evaluate the effects of Cxcl9 on osteoclast activity. TRAP staining and Western blot were performed to assess osteoclast differentiation. CXCR3 antagonist NBI-74,330 or ERK antagonist SCH772984 was administered to osteoclast to study the effects of Cxcl9 on CXCR3/ERK signaling. RESULTS: Cxcl9 was expressed and secreted increasingly in OVX mice bone. Neutralizing Cxcl9 in bone marrow prevented bone loss in the mice by facilitating bone formation as well as inhibiting bone resorption. In vitro, Cxcl9 secreted from osteoblasts facilitated osteoclast precursors adhesion, migration and their differentiation into mature osteoclasts. The positive role of osteoblastic Cxcl9 on osteoclasts was eliminated by blocking CXCR3/ERK signaling in osteoclasts. Estrogen negatively regulated Cxcl9 expression and secretion in osteoblasts, explaining the increased Cxcl9 concentration in OVX mice bone. CONCLUSION: Our study illustrates the roles of Cxcl9 in inhibiting bone formation and stimulating bone resorption in osteoporotic bone, therefore providing a possible therapeutic target to the treatment of postmenopausal osteoporosis.


Assuntos
Quimiocina CXCL9/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/fisiologia , Osteoporose Pós-Menopausa/metabolismo , Animais , Reabsorção Óssea , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Transdução de Sinais , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...